God particle to benefit humankind and biometrics

July 6, 2012 - 

This week, a fundamental base component of the universe was found. Physicists working at the CERN Large Hadron Collider, the world’s most powerful atom smasher, reported they had discovered what could be the ‘God particle’ – a subatomic particle that imparts mass to all matter in the universe:

Also known as the Higgs Boson, the particle is highly unstable, living for only the tiniest fraction of a second before decaying into other particles, so experiments can observe it only by measuring the products of its decay.

The boson is a major component of the ‘Standard Model’, a theorem in physics which successfully describes all of the elementary particles we know to exist and how they interact with one another. But our understanding of nature is incomplete. In particular, the Standard Model cannot answer one basic question: Why do most of these elementary particles have masses?

Without mass, the universe would be a very different place. For example, if the electron had no mass, there would be no atoms. Hence there would be no ordinary matter as we know it, no chemistry, no biology and no people. In addition, the Sun shines thanks to a delicate interplay among the fundamental forces of nature, which would be completely upset if some of those force particles did not have large masses.

At first sight the concept of mass seems not to fit into the Standard Model of particle physics. Two of the forces the model describes – electromagnetism and the weak nuclear force – can be described by a single theory, that of the “electroweak” force. Scientists have subjected the “electroweak” theory to many experimental tests, which it has passed with flying colors. However, the basic equations of the theory seem to require all elementary particles to be mass less.

Scientists needed a way out of this conundrum. Several physicists, including Peter Higgs, discovered a mechanism that, if added to the equations, would allow particles to have masses. This is now known as the Higgs mechanism. Integrating it into the Standard Model allowed scientists to make predictions of various quantities, including the mass of the heaviest known particle, the top quark. Experiments at CERN found this particle just where equations using the Higgs mechanism predicted it should be.

According to theory, the Higgs mechanism works as a medium that exists everywhere in space. Particles gain mass by interacting with this medium. Peter Higgs pointed out that the mechanism required the existence of an unseen particle, which we now call the Higgs boson. The Higgs boson is the fundamental component of the Higgs medium, much as the photon is the fundamental component of light.

The Higgs Boson is the only particle predicted by the Standard Model that has not yet been seen by experiments. The Higgs mechanism does not predict the mass of the Higgs boson itself but rather a range of masses. Fortunately, the Higgs boson would leave a unique particle footprint depending on its mass. So scientists know what to look for and would be able to calculate its mass from the particles they saw in the detector.

Future experiments might find that the Higgs Boson is different from the simplest version the Standard Model predicts. Many theories that describe physics beyond the Standard Model, such as supersymmetry and composite models, suggest the existence of a multiplicity of new particles, including different kinds of Higgs Bosons. If any of these scenarios turn out to be true, finding the Higgs Boson could be a gateway to discovering new physics, such as superparticles or dark matter.

While this constitutes a new, sophisticated branch of pure science, ultimately this discovery might result in new biometric applications as well. Scientists have already theorized the existence of biometric particles which perform self-propelled Brownian motion. Though applied biometric use of this science is decades away due to its nascent, expensive and non-miniaturized nature, the concept of identifying individuals based on their most fundamental subatomic biological identifiers is an appealing scientific and technological challenge. According to scientists, the discovery of the Higgs Boson might even lead humankind to Star Trek-inspired advancements such as light-speed travel and matter-energy teleportation.

Leave a Comment


About Rawlson King

Rawlson O’Neil King is a contributing editor at BiometricUpdate.com and is an experienced communications professional, management consultant, trade journalist and author who recently published a book about control and electronic networks and who has written numerous articles in trade publications and academic journals about smart home and building technologies. Follow him @rawlsonking2.